The Z-Polynomial of a Matroid
نویسندگان
چکیده
We introduce the Z-polynomial of a matroid, which we define in terms of the Kazhdan-Lusztig polynomial. We then exploit a symmetry of the Z-polynomial to derive a new recursion for Kazhdan-Lusztig coefficients. We solve this recursion, obtaining a closed formula for Kazhdan-Lusztig coefficients as alternating sums of multi-indexed Whitney numbers. For realizable matroids, we give a cohomological interpretation of the Z-polynomial in which the symmetry is a manifestation of Poincaré duality.
منابع مشابه
A Greedoid Polynomial Which Distinguishes Rooted Arborescences
We define a two-variable polynomial fa(t, z) for a greedoid G which generalizes the standard one-variable greedoid polynomial A<j(f). Several greedoid invariants (including the number of feasible sets, bases, and spanning sets) are easily shown to be evaluations of fG(t, z). We prove (Theorem 2.8) that when G is a rooted directed arborescence, fo(t, z) completely determines the arborescence. We...
متن کاملEhrhart Polynomials of Matroid Polytopes and Polymatroids
We investigate properties of Ehrhart polynomials for matroid polytopes, independence matroid polytopes, and polymatroids. In the first half of the paper we prove that for fixed rank their Ehrhart polynomials are computable in polynomial time. The proof relies on the geometry of these polytopes as well as a new refined analysis of the evaluation of Todd polynomials. In the second half we discuss...
متن کاملOn Integer Programming and the Branch-Width of the Constraint Matrix
Consider an integer program max(cx : Ax = b, x ≥ 0, x ∈ Z) where A ∈ Z, b ∈ Z, and c ∈ Z. We show that the integer program can be solved in pseudo-polynomial time when A is non-negative and the column-matroid of A has constant branch-width.
متن کاملA new semidefinite programming hierarchy for cycles in binary matroids and cuts in graphs
The theta bodies of a polynomial ideal are a series of semidefinite programming relaxations of the convex hull of the real variety of the ideal. In this paper we construct the theta bodies of the vanishing ideal of cycles in a binary matroid. Applied to cuts in graphs, this yields a new hierarchy of semidefinite programming relaxations of the cut polytope of the graph. If the binary matroid avo...
متن کاملAn Extension of Matroid Rank Submodularity and the Z-Rayleigh Property
We define an extension of matroid rank submodularity called R-submodularity, and introduce a minor-closed class of matroids called extended submodular matroids that are well-behaved with respect to R-submodularity. We apply R-submodularity to study a class of matroids with negatively correlated multivariate Tutte polynomials called the Z-Rayleigh matroids. First, we show that the class of exten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 25 شماره
صفحات -
تاریخ انتشار 2018